Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection
نویسندگان
چکیده
Associations between endosymbiotic bacteria and their hosts represent a complex ecosystem within organisms ranging from humans to protozoa. Drosophila species are known to naturally harbor Wolbachia and Spiroplasma endosymbionts, which play a protective role against certain microbial infections. Here, we investigated whether the presence or absence of endosymbionts affects the immune response of Drosophila melanogaster larvae to infection by Steinernema carpocapsae nematodes carrying or lacking their mutualistic Gram-negative bacteria Xenorhabdus nematophila (symbiotic or axenic nematodes, respectively). We find that the presence of Wolbachia alone or together with Spiroplasma promotes the survival of larvae in response to infection with S. carpocapsae symbiotic nematodes, but not against axenic nematodes. We also find that Wolbachia numbers are reduced in Spiroplasma-free larvae infected with axenic compared to symbiotic nematodes, and they are also reduced in Spiroplasma-containing compared to Spiroplasma-free larvae infected with axenic nematodes. We further show that S. carpocapsae axenic nematode infection induces the Toll pathway in the absence of Wolbachia, and that symbiotic nematode infection leads to increased phenoloxidase activity in D. melanogaster larvae devoid of endosymbionts. Finally, infection with either type of nematode alters the metabolic status and the fat body lipid droplet size in D. melanogaster larvae containing only Wolbachia or both endosymbionts. Our results suggest an interaction between Wolbachia endosymbionts with the immune response of D. melanogaster against infection with the entomopathogenic nematodes S. carpocapsae. Results from this study indicate a complex interplay between insect hosts, endosymbiotic microbes and pathogenic organisms.
منابع مشابه
Clotting factors and eicosanoids protect against nematode infections.
We show that hemolymph clotting protects Drosophila melanogaster against infections with an entomopathogenic nematode and its symbiotic bacterium. We also provide biochemical and genetic evidence for an involvement of eicosanoids in the same infection model. Taken together, our results confirm the conserved nature of the immune function of clot formation.
متن کاملThe Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode
Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide ...
متن کاملRNAseq Analysis of the Drosophila Response to the Entomopathogenic Nematode Steinernema
Drosophila melanogaster is an outstanding model to study the molecular and functional basis of host-pathogen interactions. Currently, our knowledge of microbial infections in D. melanogaster is well understood; however, the response of flies to nematode infections is still in its infancy. Here, we have used the potent parasitic nematode Steinernema carpocapsae, which lives in mutualism with its...
متن کاملAdaptive evolution of a novel Drosophila lectin induced by parasitic wasp attack.
Drosophila melanogaster has long been used as a model for the molecular genetics of innate immunity. Such work has uncovered several immune receptors that recognize bacterial and fungal pathogens by binding unique components of their cell walls and membranes. Drosophila also act as hosts to metazoan pathogens such as parasitic wasps, which can infect a majority of individuals in natural populat...
متن کاملImmune response of Drosophila melanogaster to infection with the flagellate parasite Crithidia spp.
Insects are able to recognize invading microorganisms and to mount an immune response to bacterial and fungal infections. Recently, the fruitfly Drosophila melanogaster has emerged as a promising invertebrate model to investigate innate immunity because of its well-characterized genetics. Insects are also vectors of numerous parasites which can trigger an immune response. We have investigated t...
متن کامل